Accelerated High Spatial Resolution Diffusion-Weighted Imaging
نویسندگان
چکیده
Acquisition of a series of anisotropically oversampled acquisitions (so-called anisotropic "snapshots") and reconstruction in the image space has recently been proposed to increase the spatial resolution in diffusion weighted imaging (DWI), providing a theoretical 8x acceleration at equal signal-to-noise ratio (SNR) compared to conventional dense k-space sampling. However, in most works, each DW image is reconstructed separately and the fact that the DW images constitute different views of the same anatomy is ignored. In addition, current approaches are limited by their inability to reconstruct a high resolution (HR) acquisition from snapshots with different subsets of diffusion gradients: an isotropic HR gradient image cannot be reconstructed if one .of its anisotropic snapshots is missing, for example due to intra-scan motion, even if other snapshots for this gradient were successfully acquired. In this work, we propose a novel multi-snapshot DWI reconstruction technique that simultaneously achieves HR reconstruction and local tissue model estimation while enabling reconstruction from snapshots containing different subsets of diffusion gradients, providing increased robustness to patient motion and potential for acceleration. Our approach is formalized as a joint probabilistic model with missing observations, from which interactions between missing snapshots, HR reconstruction and a generic tissue model naturally emerge. We evaluate our approach with synthetic simulations, simulated multi-snapshot scenario and in vivo multi-snapshot imaging. We show that (1) our combined approach ultimately provides both better HR reconstruction and better tissue model estimation and (2) the error in the case of missing snapshots can be quantified. Our novel multi-snapshot technique will enable improved high spatial characterization of the brain connectivity and microstructure in vivo.
منابع مشابه
[Examination of upper abdominal region in high spatial resolution diffusion-weighted imaging using 3-Tesla MRI].
The advantage of the higher signal-to-noise ratio (SNR) of 3-Tesla magnetic resonance imaging (3-Tesla) has the possibility of contributing to the improvement of high spatial resolution without causing image deterioration. In this study, we compared SNR and the apparent diffusion coefficient (ADC) value with 3-Tesla as the condition in the diffusion-weighted image (DWI) parameter of the 1.5-Tes...
متن کاملRecent Advances in PET-MR Hybrid contrast agent
Introduction: All of the Imaging modalities have advantages and disadvantages alone. So if we want to have the best and perfect image, combining these modalities produces something we desired. PET-MR images consist of morphologic and metabolic data. MRI and PET provide high spatial and contrast resolution and high sensitivity and molecular information respectively. Hybrid PET-...
متن کاملHigh-Resolution Diffusion-Weighted Imaging of the Orbits Using Readout-Segmented EPI
Introduction: Diffusion-weighted MRI (DWI) has demonstrated great value for the diagnostic workup of acute ischemic stroke and other abnormalities of the neurocranium, such as abscesses, CJD, etc. Similar diagnostic benefits could be anticipated from using DWI on orbital pathologies. High on the list of interesting pathologies are certainly periorbital dermoids/epidermois, fungal and pyogenic i...
متن کاملHigh-resolution, Anatomically-accurate Diffusion-weighted Imaging of Orbital and Sinonasal Lesions with RESOLVE
Diffusion-weighted imaging is a core sequence in clinical routine imaging for many anatomical regions including the brain, abdomen, breasts, and pelvis [1, 2]. Conventionally, diffusion-weighted imaging is acquired using a single-shot diffusion-weighted echo planar imaging (EPI) sequence with the primary advantages of insensitivity to motion-induced phase errors and relatively short acquisition...
متن کاملPerfusion and diffusion imaging in acute focal cerebral ischemia: temporal vs. spatial resolution.
High-resolution diffusion- (DWI) and perfusion-weighted (PWI) imaging may provide substantial benefits in accurate delineation of normal, ischemic, and at-risk tissue. We compared the capability of low (400 x 400 microm(2)) and high (200 x 200 microm(2)) spatial resolution imaging in characterizing the spatiotemporal evolution of the ischemic lesion in a permanent middle artery occlusion (MCAO)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Information processing in medical imaging : proceedings of the ... conference
دوره 24 شماره
صفحات -
تاریخ انتشار 2015